4th International Conference on Rehabilitation and Maintenance in Civil Engineering

STABILITY EVALUATION OF SERMO DAM, YOGYAKARTA, USING TWO COMPONENTS ACCELERATION TIME HISTORIES CAUSES BY JAVA SUBDUCTION EARTHQUAKE SCENARIOS.

Windu Partono, Undayani Cita Sari

Background

- ✓ The Aceh earthquake on 26 December 2004 was an earthquake in the sea and had a magnitude of 9.2 Mw which also caused a tsunami.
- ✓ The Yogyakarta earthquake was happened on 27 May 2006 with magnitude moment, 6.3 Mw.

To evaluate the stability of Sermo dam due to south Java subduction earthquake scenarios. The analysis was performed by conducting two component acceleration time histories (North-South/NS and East-West/EW directions) causes by four subduction source earthquake event scenarios as a seismic load to dam structure..

Sermo Dam Position

Sermo Dam Model

	No	Soil and Rock Parameters	Bedrock	Shell	Transition	Filter	Core
	1	$\gamma_{saturated}$ (kN/m ³)	21.82	21.00	21.70	21.00	18.74
		$\gamma_{unsaturated} (kN/m^3)$	20.12	20.00	21.60	18.50	15.41
	2	Cohesion (C) (kN/m^2)	680	0.001	0.001	0.001	8.3
	3	Friction Angle (ø) (degree)	55	43	35	35	32
	4	Permeability Coeff. (k) (m/day)	8.53	12154.69	14.292	134.1	2 . 32 x 10 ⁻⁴
	5	Young's Modulus € (kN/m ²)	320000	200000	150000	150000	100000
	6	Poisson's ratio (v)	0.45	0.35	0.30	0.30	0.45
	7	Vs (m/s)	231	148	171	187	158
	8	Vp (m/s)	768	491	357	458	330

Data Analysis (Response Spectral Matching)

Due to uncompleted data related with the acceleration time histories from Java subduction source, all acceleration time histories used in this study were collected from international ground motion databases. All acceleration time histories cannot directly be used for dam stability analysis. All acceleration time histories should be matched with the seismic mechanism of Java subduction source.

Data Analysis (Response Spectral Matching)

Acceleration Time Histories Data

Seismic Sources	Epicentre Distance (Km)	Magnitude (Mw)					
Illapel, Chille (2015)	235 Km	8.3					
Kodiak, Alaska (2018)	281.4 Km	7.9					
South Sumatera, Indonesia (2007)	394 Km	8.4					
Mentawai, Indonesia (2007)	167.7 Km	7.9					

Two Component Acceleration Time South Sumatera Earthquake

Spectral Target for South Sumatera and Mentawai Earthquake

Position of displacement and PGA measurements

Displacement At Core Zone 145 140 135 Dam Elevation (m) 130 125 120 Vertical Displacement 115 Horizontal Displacement 110 Total Displacement 105 100 0.1 0.2 0.3 0.4 0.5 0.6 0 **Displacement (m)**

Displacement of core zone measured

PGA profiles at core position

Comclusions

- 1. Based on the total displacement results calculated using four earthquake scenarios and the results calculated for original dam condition without earthquake loads it seems that all displacement analysis results are almost equal.
- 2. The maximum PGA value investigated at core zone of dam is 0.0001 g.
- 3. Sermo dam is predicted strong enough to resist earthquake causes by Java subduction megathrust earthquake with maximum magnitude 8.4 Mw and minimum epicentre distance approximately 160 Km.

THANK YOU